Main Article Content

Abstract

This research aims to study the effect of urbanization on flood-prone areas in the city of Jijel. The methods used in the study are (i) generation of a susceptibility map (ii) identification of land-use maps for the years 1988 and 2021 (iii) generation of flood hazard maps for the years 1988 and 2021. The determination of flood hazard areas is mainly based on an index approach. Using the ArcGIS raster calculator tool, the susceptibility map was multiplied by the land use map to generate a flood hazard index. Based on parameter weights derived from the Analytical Hierarchical Process (AHP) approach, the various flow accumulation maps, slope, distance to stream, elevation and geological parameters were combined to create the flood susceptibility map. The effects of urbanization on flood-prone areas were determined by overlaying the susceptibility map with two land-use maps from 1988 and 2021. The results show that while areas at very low, low and moderate risk decreased by 9.28%, 17.31% and 47.3%, respectively, areas at high and very high risk increased by 32.36% and 41.53%, respectively. The study showed that increases in the high zone were mainly due to uncontrolled urban development, mainly caused by rural exodus in Algeria's coastal cities.

Article Details

How to Cite
Chabou, O., Lazri, Y., & Lehtihet, M. C. (2024). Application of Flood Hazard Index and Multi-Criteria Decision Analysis to Determine the Effect of Urbanization on Flood Hazard Areas in the City of Jijel, Algeria. Indonesian Journal of Social Science Research, 5(2), 427-443. https://doi.org/10.11594/ijssr.0.02.06

References

Ahmed, I., Das (Pan), N., Debnath, J., Bhowmik, M., & Bhattacharjee, S. (2024). Flood hazard zonation using GIS-based multi-parametric Analytical Hierarchy Process. Geosystems and Geoenvironment, 3(2), 100250. https://doi.org/10.1016/J.GEOGEO.2023.100250
2. Boori, M. S. and V. V. (2014). Land Use/Cover, Vulnerability Index and Exposer Intensity. Journal of Environments, 1(1), 1–7. https://www.asianonlinejournals.com/index.php/JOEN/article/view/648
3. Bouhelouf, Y., Hadjiedj, A., & Dubois-Maury, J. (2019). Potentialités et projet d’attractivité du territoire de la ville de Jijel (Algérie). Bulletin de l’association de Géographes Français. Géographies, 96(96–1), 124–145. https://doi.org/10.4000/BAGF.4686
4. da Silva, L. B. L., Alencar, M. H., & de Almeida, A. T. (2020). Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. International Journal of Disaster Risk Reduction, 50, 101865. https://doi.org/10.1016/J.IJDRR.2020.101865
5. Dash, P., & Sar, J. (2020). Identification and validation of potential flood hazard area using GIS-based multi-criteria analysis and satellite data-derived water index. Journal of Flood Risk Management, 13(3), e12620. https://doi.org/10.1111/JFR3.12620
6. Djellit, H. (1987). Évolution tectono-métamorphique du socle Kabyle et polarité de mise en place des nappes de flysch en petite Kabylie occidentale (Algérie). University of Paris 11.
7. Dottori, F., Martina, M. L. V., & Figueiredo, R. (2018). A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. Journal of Flood Risk Management, 11, S632–S645. https://doi.org/10.1111/JFR3.12234
8. Du, S., Shi, P., Van Rompaey, A., & Wen, J. (2015). Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Natural Hazards, 76(3), 1457–1471. https://doi.org/10.1007/S11069-014-1463-2
9. Duan, W., He, B., Takara, K., Luo, P., Nover, D., Yamashiki, Y., & Huang, W. (2014). Anomalous atmospheric events leading to Kyushu’s flash floods, July 11-14, 2012. Natural Hazards, 73(3), 1255–1267. https://doi.org/10.1007/S11069-014-1134-3
10. Dutal, H. (2023). Determining the effect of urbanization on flood hazard zones in Kahramanmaras, Turkey, using flood hazard index and multi-criteria decision analysis. Environmental Monitoring and Assessment, 195(1), 1–22. https://doi.org/10.1007/S10661-022-10693-6
11. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J. L., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525–542. https://doi.org/10.1080/1573062X.2014.916314
12. Gomez-Cunya, L. A., Tilt, J., Tullos, D., & Babbar-Sebens, M. (2022). Perceived risk and preferences of response and recovery actions of individuals living in a floodplain community. International Journal of Disaster Risk Reduction, 67, 102645.https://doi.org/10.1016/J.IJDRR.2021.102645
13. Guo, E., Zhang, J., Ren, X., Zhang, Q., & Sun, Z. (2014). Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China. Natural Hazards, 74(2), 947–965. https://doi.org/10.1007/S11069-014-1238-9
14. Ha-Mim, N. M., Hossain, M. Z., Islam, M. T., & Rahaman, K. R. (2024). Evaluating resilience of coastal communities upon integrating PRISMA protocol, composite resilience index and analytical hierarchy process. International Journal of Disaster Risk Reduction, 101, 104256. https://doi.org/10.1016/J.IJDRR.2024.104256
15. Hansson, K., Danielson, M., & Ekenberg, L. (2008). A framework for evaluation of flood management strategies. Journal of Environmental Management, 86(3), 465–480.https://doi.org/10.1016/J.JENVMAN.2006.12.037
16. Jodhani, K. H., Patel, D., & Madhavan, N. (2023). A review on analysis of flood modelling using different numerical models. Materials Today: Proceedings, 80, 3867–3876. https://doi.org/10.1016/J.MATPR.2021.07.405
17. Kiedrzyńska, E., Kiedrzyński, M., & Zalewski, M. (2015). Sustainable floodplain management for flood prevention and water quality improvement. Natural Hazards, 76(2), 955–977.https://doi.org/10.1007/S11069-014-1529-1
18. Larsen, J. B. (2009). Forestry between land use intensification and sustainable development: Improving landscape functions with forests and trees. Geografisk Tidsskrift, 109(2), 191–195. https://doi.org/10.1080/00167223.2009.10649607
19. Li, C. juan, Chai, Y. qing, Yang, L. sheng, & Li, H. rong. (2016). Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa. Natural Hazards, 82(1), 721–731. https://doi.org/10.1007/S11069-016-2181-8
20. Liu, Y., Engel, B. A., Flanagan, D. C., Gitau, M. W., McMillan, S. K., & Chaubey, I. (2017). A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Science of The Total Environment, 601–602, 580–593. https://doi.org/10.1016/J.SCITOTENV.2017.05.212
21. Liu, Z., Zhang, H., & Liang, Q. (2019). A coupled hydrological and hydrodynamic model for flood simulation. Hydrology Research, 50(2), 589–606. https://doi.org/10.2166/NH.2018.090
22. Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., & Nicolaides, K. (2010). High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Advances in Geosciences, 23, 47–55. https://doi.org/10.5194/ADGEO-23-47-2010
23. Lyons, M., & Snoxell, S. (2005). Creating Urban Social Capital: Some Evidence from Informal Traders in Nairobi. Http://Dx.Doi.Org/10.1080/00420980500120865, 42(7), 1077–1097. https://doi.org/10.1080/00420980500120865
24. Lyu, H. M., Shen, S. L., Zhou, A., & Yang, J. (2019). Perspectives for flood risk assessment and management for mega-city metro system. Tunnelling and Underground Space Technology, 84, 31–44.https://doi.org/10.1016/J.TUST.2018.10.019
25. Mahmoud, S. H., & Gan, T. Y. (2018). Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. Science of The Total Environment, 636, 152–167. https://doi.org/10.1016/J.SCITOTENV.2018.04.282
26. Moussaoui, M., Sidi, H., Derbak, H., & Bekdouche, F. (2022). Post-fire dynamics of the main biogenic nutrients of the Pinus pinaster forest soil of Jijel, Northeastern Algeria. Ekologia Bratislava, 41(3), 212–218. https://doi.org/10.2478/EKO-2022-0021
27. Natarajan, L., Usha, T., Gowrappan, M., Palpanabhan Kasthuri, B., Moorthy, P., & Chokkalingam, L. (2021). Flood Susceptibility Analysis in Chennai Corporation Using Frequency Ratio Model. Journal of the Indian Society of Remote Sensing, 49(7), 1533–1543. https://doi.org/10.1007/S12524-021-01331-8
28. National hydraulic resources agency ANRH. (2020). Monthly and Maximum Daily Precipitation Records.
29. National Institute of Cartography and Remote Sensing. (1988). Plans and Maps of Algeria. http://www.inct.mdn.dz/site_anglais/index
30. National Institute of Cartography and Remote Sensing. (2021). Plans and Maps of Algeria. http://www.inct.mdn.dz/site_anglais/index
31. Naulin, J. P., Payrastre, O., & Gaume, E. (2013). Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France. Journal of Hydrology, 486, 88–99. https://doi.org/10.1016/J.JHYDROL.2013.01.044
32. Papathoma-Köhle, M., Cristofari, G., Wenk, M., & Fuchs, S. (2019). The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. International Journal of Disaster Risk Reduction, 36, 101103. https://doi.org/10.1016/J.IJDRR.2019.101103
33. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation: McGraw-Hill. New York.
34. Salama Pierre. (1995). Djidjelli.(Igilgili, Jijel). Encyclopédie Berbère, 1(16), 2469–2476. https://doi.org/10.4000/ENCYCLOPEDIEBERBERE.2193
35. Samaraweera, H. U. S. (2023). Exploring complexities of disaster risk and vulnerability: Everyday lives of two flood-affected communities in Sri Lanka. Sustainable Development. https://doi.org/10.1002/SD.2723
36. Shirzadi, A., Chapi, K., Shahabi, H., Solaimani, K., Kavian, A., & Ahmad, B. Bin. (2017). Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 76(4), 1–17. https://doi.org/10.1007/S12665-017-6471-6
37. The World Bank. (2023). Urban Development Overview. https://www.worldbank.org/en/topic/urbandevelopment/overview#1
38. Tsakiris, G. (2014). Flood risk assessment: Concepts, modelling, applications. Natural Hazards and Earth System Sciences, 14(5), 1361–1369. https://doi.org/10.5194/NHESS-14-1361-2014
39. Wing, O. E. J., Pinter, N., Bates, P. D., & Kousky, C. (2020). New insights into US flood vulnerability revealed from flood insurance big data. Nature Communications 2020 11:1, 11(1), 1–10. https://doi.org/10.1038/s41467-020-15264-2
40. Yulianto, F., Suwarsono, Nugroho, U. C., Nugroho, N. P., Sunarmodo, W., & Khomarudin, M. R. (2020). Spatial-Temporal Dynamics Land Use/Land Cover Change and Flood Hazard Mapping in the Upstream Citarum Watershed, West Java, Indonesia. Quaestiones Geographicae, 39(1), 125–146. https://doi.org/10.2478/QUAGEO-2020-0010