Main Article Content
Abstract
Monitoring spatio-temporal changes in land use and land cover (LULC) and the value of ecosystem services (ESV) contributes significantly to sustainable development and management. Over the last 30 years, LULC has changed enormously in the Mila region of eastern Algeria, covering approximately 69,052 hectares. The Mila municipality, located on a minor affluent of the Oued Rhumel and dominated by the Marchau mountain, is one of the most crucial functional ecological and environmental zones in the country. Utilizing remote sensing, four satellite images of the study area, dated between 1994 and 2024, were visually interpreted to obtain LULC data classification and global value coefficients, which were then used to evaluate local spatio-temporal changes in ESV and LUC over this period.
Five LULC types were identified in the study area: Urban Area, Active Agriculture, Vegetation, Soil (bare land), and Water Body. These classifications were used in conjunction with ecosystem service value coefficients to analyze the changes. The results indicated that from 1994 to 2024, vegetation (shrubs and grasslands) decreased, while built-up land (urban areas), water bodies (due to the construction of the Beni Haroun dam), and cultivated land increased.
This study underscores the vital role of the wilaya of Mila in the regional system of maintaining landscape change and provides a scientific reference and cartographic tool for the sustainable development of land resources and ecosystem services in semi-arid regions.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. Arowolo, A. O.; Deng, X., Olatunji, O. A.; & Obayelu, A. E. (2018). Assessing changes in the value of ecosystem services in re-sponse to land-use/land-cover dynamics in Nigeria. Science of the Total Environ-ment, 636, 597–609. https://doi.org/10.1016/j.ecoser.2020.101069
3. Barua, S. K., Boscolo, M., & Animon, I. (2020). Valuing forest-based ecosystem services in Bangladesh: Implications for research and policies. Ecosystem Services, 42, 101069. https://doi.org/10.1016/j.ecoser.2020.101069
4. Bateman, I.J., Mace, G.M., Fezzi, C. et al. (2011). Economic Analysis for Ecosystem Service Assessments. Environ Resource Econ 48, 177–218. https://doi.org/10.1007/s10640-010-9418-x
5. Bryan, B.A.; Ye, Y.; Zhang, J.; Connor, J.D. (2018). Land-use change impacts on eco-system services value: Incorporating the scarcity effects of supply and demand dy-namics. Ecosyst. Serv., 32, 144–157. https://doi.org/10.1016/j.ecoser.2018.07.002
6. Bey, A.A.; Diaz, A.S.P.A.; Maniatis, D.D.; Marchi, G.G.; Mollicone, D.; Ricci, S.S.; Bas-tin, J.-F.; Moore, R.R.; Federici, S.S.; Rezende, M.M.; et al. (2016). Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote. Sens., 8, 807. https://doi.org/10.3390/rs8100807
7. Costanza, R.; D’Arge, R.; de Groot, R.; Far-ber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. (1997). The value of the world’s eco-system services and natural capital. Na-ture, 387, 253–260. https://doi.org/10.1016/S0921-8009(98)00020-2
8. Costanza, R.; D’Arge, R.; de Groot, R.; Far-ber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. (1998). The value of the world’s eco-system services and natural capital. Ecol. Econ., 25, 3–15. https://doi.org/10.1016/S0921-8009(98)00020-2
9. Costanza, R.; De Groot, R.; Sutton, P.C.; Van Der Ploeg, S.; Anderson, S.J.; Ku-biszewski, I.; Farber, S.; Turner, R.K. (2014) Changes in the global value of eco-system services. Glob. Environ. Chang., 26, 152–158.
10. https://doi.org/10.1016/j.gloenvcha.2014.04.002
11. Cruz-Garcia, G. S., Cubillos, M. V., Torres-Vitolas, C., Harvey, C. A., Shackleton, C. M., Schreckenberg, K., et al. (2019). He says, she says: Ecosystem services and gender among indigenous communities in the Co-lombian Amazon. Ecosystem Services, 37,100921.https://doi.org/10.1016/j.ecoser.2019.100921
12. Cerretelli, S., Poggio, L., Gimona, A., Yakob, G., Boke, S., Habte, M., Coull, M., Peressotti, A., & Black, H. (2018). Spatial assessment of land degradation through key ecosystem services: The role of glob-ally available data. Science of The Total Environment, 628–629, 539–555. https://doi.org/10.1016/j.scitotenv.2018.02.085
13. Chen, M., Tan, Y., Xu, X., & Lin, Y. (2024). Identifying ecological degradation and restoration zone based on ecosystem qual-ity: A case study of Yangtze River Delta. Applied Geography, 162, 103149. https://doi.org/10.1016/j.apgeog.2023.103149
14. Chen, W., Chi, G., & Li, J. (2019). The spa-tial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Science of the Total Environment, 669, 459–470. https://doi.org/10.1016/j.scitotenv.2019.03.139
15. Chen, W., Li, J., & Zhu, L. (2019). Spatial heterogeneity and sensitivity analysis of ecosystem services value in the Middle Yangtze River region (in Chinese). Journal of Natural Resources, 34(2), 325–337.https://doi.org/10.31497/zrzyxb.20190209
16. De Bello, F., Lavorel, S., Díaz, S., Harring-ton, R., Cornelissen, J. H. C., Bardgett, D., et al. (2010). Towards an assessment of mul-tiple ecosystem processes and services via functional traits. Biodiversity and Conser-vation, 19, 2873–2893. https://doi.org/10.1007/s10531-010-9850-9
17. Diédhiou, I., Mering, C., Sy, O., & Sané, T. (2020). Teledetection mapping of land cover and land use change. Application to the analysis of the dynamics of Senegam-bian forest landscapes between 1972 and 2016. EchoGeo, 54. https://doi.org/10.4000/echogeo.20510
18. De Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Eco-logical Complexity, 7, 260–272. https://doi.org/10.1016/j.ecocom.2009.10.006
19. Delgado, L. E., & Marín, V. H. (2020). Eco-system services and ecosystem degrada-tion: Environmentalist’s expectation? Eco-system Services, 45, 101177. https://doi.org/10.1016/j.ecoser.2020.101177
20. Desta, H. (2021). Local perceptions of eco-system services and human-induced deg-radation of lake Ziway in the Rift Valley region of Ethiopia. Ecological Indicators, 127, 107786. https://doi.org/10.1016/j.ecolind.2021.107786
21. El Garouani, A., & Nabunya, V. (n.d.). Analy-sis of Climate Trend and Effect of Land Cover Change on Streamflow in Oued Fez Basin, Morocco. https://www.mdpi.com/1424-2818/15/12/1220
22. El Garouani, A., Aharik, K., & El Garouani, S. (2020). Water balance assessment using re-mote sensing, Wet-Spass model, CN-SCS, and GIS for water resources man-agement in Saïss Plain (Morocco). Arabian Journal of Geosciences, 13, 1–9. https://www.re-searchgate.net/publication/343242033
23. Jabbar, & Yusoff, M. M. (2022). Assessing the Spatiotemporal Urban Green Cover Changes and Their Impact on Land Sur-face Temperature and Urban Heat Island in La-hore (Pakistan) Research Paper. Ge-ogra-phy, Environment, Sustainability, 15(1), 122–140. https://doi.org/10.24057/2071-9388-2021-005
24. Miyamoto M, Parid MM, Aini ZN, Michina-ka T. (2014). Proximate and underlying causes of forest cover change in Peninsu-lar Malaysia. For Policy Econ. 44:18–25.
25. Meshesha DT, Tsunekawa A, Tsubo M, Ali SA, Haregeweyn N. (2013). Land-use change and its socio-environmental im-pact in Eastern Ethiopia’s highland. Reg Environ Change. doi:10.1007/s10113-013-053
26. Riao, D.; Zhu, X.; Tong, Z.; Zhang, J.; Wang, A. (2020). Study on Land Use/Cover Change and Ecosystem Services in Harbin, China. Sustainability, 12, 6076. https://doi.org/10.3390/su12156076
27. Rai, R.; Zhang, Y.; Paudel, B.; Acharya, B.K.; Basnet, L. (2018). Land Use and Land Cover Dynamics and Assessing the Ecosys-tem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas.
Sustainability, 10, 3052. https://doi.org/10.3390/su10093052
28. Fu, B.; Li, Y.; Wang, Y.; Zhang, B.; Yin, S.; Zhu, H.; Xing, Z. (2016).Evaluation of eco-system service value of riparian zone us-ing land use data from 1986 to 2012. Ecol. Indic., 69, 873–881. https://doi.org/10.1016/j.ecolind.2016.05.048
29. Fan, F., Liang, C., Tang, Y., Harker-Schuch, I., & Porter, J. R. (2019). Effects and rela-tionships of grazing intensity on multiple ecosystem services in the Inner Mongolian steppe. Science of the Total Environment, 675, 642–650. https://doi.org/10.1016/j.scitotenv.2019.04.279
30. Seeberg, G., Hostlowsky, A., Huber, J., Kamm, J., Lincke, L., & Schwingshackl, C. (2022). Evaluating the Potential of Land-sat Satellite Data to Monitor the Effective-ness of Measures to Mitigate Urban Heat Islands: A Case Study for Stuttgart (Ger-many). Ur-ban Science, 6(4), 82.
16.https://www.mdpi.com/2413-8851/6/4/82
31. Yang, T.; Jin, Y.; Yan, L.; Pei, P.V. (2019) Aspirations and realities of polycentric development: Insights from multi-source data into the emerging urban form of Shanghai. Environ. Plan. B Urban Anal. City Sci., 46, 1264–1280.https://doi.org/10.1177/2399808319864972
32. Zeleke G, Hurni H. 2001. Implications of land use and land cover dynamics for mountain resource degradation in the Northwestern Ethiopian Highlands. Moun-tain Res Dev. 21:184–191. https://www.jstor.org/stable/3674160
33. Zhao, B., Kreuter, U., Li, B., Ma, Z. J., Chen, J. K., & Nakagoshi, N. (2004). An ecosys-tem service value assessment of land-use changes on Chongming Island, China. Land Use Policy, 21, 139–148. https://doi.org/10.1016/j.landusepol.2003.10.003