Main Article Content

Abstract

In the context of Algerian energy and environmental concerns and its aspirations for energy transition, this article examines the pre- and post-state of a multi-family residential building in the city of Skikda, in northern Algeria, utilizing the UBEM reduced-order approach, alongside QGIS, CEA and METEONORM tools. Primarily focusing on the building's solar exposure, energy aspects, and environmental considerations. Six hybrid renovation scenarios were considered then, and assessed for their contribution for energy savings and ecological improvement. The main results revealed that 87% of annual energy requirements were related to heating and hot water, which are supplied by a natural gas system, a source of various types of greenhouse gases, which suggested the use of triple glazing, with or without two selective low-emissivity coatings only, or be combined by changing hot-water supply system to an electric one, alongside the installation of the hybrid PVT panels on the south façade. This triple glazing was joint in another scenario by integrating the same type of panels on the roof alongside a seasonal thermal energy storage system. This latter scenario being the best in terms of energy and ecology, and making the building highly performant in both aspects.

Article Details

How to Cite
Khelfa, I. eddine, Lazri, Y., Alkama, D., & Toumi, R. (2024). An Energy and Ecological Assessment of The Prior and Post-Hybrid Renovation State of Multi-Dwelling Building in the Algerian City of Skikda. Indonesian Journal of Social Science Research, 5(1), 130-143. https://doi.org/10.11594/ijssr.05.01.12

References

1. Ahmari, I., & Korichi, A. (2019). Simula-tion de l’impact de l’inertie thermique sur la consommation énergétique d’un bâti-ment résidentiel dans un climat méditer-ranéen. 16.
2. Akande, O. K., Odeleye, D., & Coday, A. (2014). Energy efficiency for sustainable reuse of public heritage buildings: The case for research. International Journal of Sustainable Development and Planning, 9(2), 237–250. https://doi.org/10.2495/SDP-V9-N2-237-250
3. Alberto, D. (2021, October 25). Dia-gramme solaire azimut-hauteur. Astro-labe-science. https://www.astrolabe-science.fr/diagramme-solaire-azimut-hauteur/
4. ANIREF. (2020). MONOGRAPHIE WILAYA DE SKIKDA - Ministère de l’Industrie—Agence Nationale d’Intermédiation et de Régulation Foncière. 29.
5. Batiactu. (2022, September 30). La fiabil-ité du DPE encore attaquée, la profession avance ses propositions. Batiactu. https://www.batiactu.com/edito/fiabilite-dpe-encore-attaquee-profession-reagit-64867.php
6. Bekhtache, R. (2012). La transition éner-gétique via le gaz au service du dé-veloppement durable en Algérie : Étude analytique sur la période (2000-2014). Journal of Economic Studies, 6(3), 01–13.
7. Boulkenafet, N. (2014). Gestion et Optimi-sation de la Réhabilitation Thermique des Bâtiments [Pour obtenir le titre de
Magister]. Université 20 Août 1955-Skikda Faculté de Technologie Départe-ment de Génie Civil.
8. Brighet, K. (2018). Etude de l’ambiguïté du statut de l’espace social parties com-munes dans l’habitat collectif : Cas de Skikda cité du 20aout – cité camus rossi [Thesis]. http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2260
9. Chen, H. (2023). Köppen climate classifi-cation. Hans Chen. http://hanschen.org/koppen
10. Civiero, P., Pascual, J., Arcas Abella, J., Bil-bao Figuero, A., & Salom, J. (2021). PEDRERA. Positive Energy District Reno-vation Model for Large Scale Actions. En-ergies, 14(10), 2833. https://doi.org/10.3390/en14102833
11. Corrado, V., Ballarini, I., & Paduos, S. (2014). Assessment of Cost-optimal Ener-gy Performance Requirements for the Italian Residential Building Stock. Energy Procedia, 45, 443–452. https://doi.org/10.1016/j.egypro.2014.01.048
12. Ferrara, M., Fabrizio, E., Virgone, J., & Filippi, M. (2014). A simulation-based op-timization method for cost-optimal analy-sis of nearly Zero Energy Buildings. Ener-gy and Buildings, 84, 442–457. https://doi.org/10.1016/j.enbuild.2014.08.031
13. Gehlin, S. (2016). Borehole thermal ener-gy storage. In Advances in Ground-Source Heat Pump Systems (pp. 295–327). Else-vier. https://doi.org/10.1016/B978-0-08-100311-4.00011-X
14. Haberl, J., Claridge, D., & Culp, C. (2005). ASHRAE’s Guideline 14-2002 for Meas-urement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit.
15. Hadef, H. (2020). LA VILLE FACE AUX RISQUES : VERS UNE MAÎTRISE DU RISQUE INDUSTRIEL, CAS DE SKIKDA. Revue des Sciences Humaines & Sociales, 6(2), 560–584.
16. Ha-Nhi, D.-H. (2023). Quels sont les in-convénients du triple vitrage ? Est-ce rentable ? Heero.Fr. https://heero.fr/guide-travaux/isolation/fenetres-portes/quels-sont-les-inconvenients-du-triple-vitrage/
17. Hong, T., Chen, Y., Luo, X., Luo, N., & Lee, S. H. (2020). Ten questions on urban building energy modeling. Building and Environment, 168, 106508. https://doi.org/10.1016/j.buildenv.2019.106508
18. Jepsen, B. K. H., Haut, T. W., & Jradi, M. (2022). Design, Modelling and Perfor-mance Evaluation of a Positive Energy District in a Danish Island. Future Cities and Environment, 8(1), 1. https://doi.org/10.5334/fce.146
19. Kassis, F. (2012). Haute qualité envi-ronnementale dans les espaces domes-tiques collectifs cas d’étude à Skikda [Mémoire pour l’obtention du diplôme de magister en architecture]. Universite fer-hat abbas– Setif.
20. Larrère, C. (2009). La justice envi-ronnementale. Multitudes, n° 36(1), 156–162.
21. Latreche, S., & Sriti, L. (2018). Optimisa-tion énergétique d’un bâtiment résidentiel autoproduite à Biskra à travers ses carac-téristiques matérielles. Journal of Renew-able Energies, 21(3), Article 3.
22. Mauri, L. (2016). Feasibility Analysis of Retrofit Strategies for the Achievement of NZEB Target on a Historic Building for Tertiary Use. Energy Procedia, 101, 1127–1134. https://doi.org/10.1016/j.egypro.2016.11.153
23. Mikulić, D., Slijepčević, S., & Buturac, G. (2020). Energy renovation of multi apartment buildings: Contributions to economy and climate changes. Energy and Buildings, 224, 110247. https://doi.org/10.1016/j.enbuild.2020.110247
24. Nabinger, S., & Persily, A. (2011). Impacts of air tightening retrofits on ventilation rates and energy consumption in a manu-factured home. Energy and Buildings, 43(11), 3059–3067. https://doi.org/10.1016/j.enbuild.2011.07.027
25. Pearce, K. P. / P. (2022, February 22). Gas stoves might pose risks to both our planet and health. The Hub. https://hub.jhu.edu/2022/02/22/gas-stoves-environment-warning/
26. Santamouris, M. (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat is-land and improve comfort in urban envi-ronments. Solar Energy, 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003
27. Setti, M., Mohamed-Cherif, F.-Z., & Du-cruet, C. (2011). Les ports algériens dans la mondialisation : La fin du paradoxe ? Méditerranée. Revue géographique des pays méditerranéens / Journal of Medi-terranean geography, 116, Article 116. https://doi.org/10.4000/mediterranee.5410
28. Site Climats et voyages, C. du monde. (2020). Climat Skikda : Températures, précipitations, conditions météo pré-valentes, quand partir. https://www.climatsetvoyages.com/climat/algerie/skikda
29. Stenberg, J. (2018). Dilemmas associated with tenant participation in renovation of housing in marginalized areas may lead to system change. Cogent Social Sciences, 4(1), 1528710. https://doi.org/10.1080/23311886.2018.1528710
30. Stovall, T., Childs, P., Petrie, T., Atchley, J., Kosny, J., & Sissom, K. (2007). An Explora-tion of Wall Retrofit Best Practices. 10.
31. Vie-publique web-site. (2021, October 19). La rénovation énergétique pour ré-pondre aux enjeux climatiques, économiques et sociaux. vie-publique.fr. http://www.vie-publique.fr/eclairage/277414-la-renovation-energetique-des-batiments-reponse-aux-enjeux-climatiques
32. Vlad. (2022, September 20). Diagnostic performance énergétique : Nouveautés 2023. Des Murs à Paris. https://www.desmursaparis.com/diagnostic-performance-energetique-avantages-inconvenients/
33. Willmann, A., Katscher, L., Leiser, T., & Voelker, C. (2019). A Comparison of Bot-tom-up and Top-down Modelling Ap-proaches in Urban Energy Simulation for the Assessment of City District Data Mod-els. 3303–3310. https://doi.org/10.26868/25222708.2019.210424
34. Xu, J., Wang, R. Z., & Li, Y. (2014). A re-view of available technologies for season-al thermal energy storage. Solar Energy, 103, 610–638. https://doi.org/10.1016/j.solener.2013.06.006